C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Differential and Integral Calculus

Subject (Code: 4SC04MTC1 Br	anch: B.Sc.(Mathematic	s,Physics)
Semester Instructi	r: 4 Date: 15/04/2017 Tin ons:	ne: 10:30 To 01:30	Marks: 70
 (1) U (2) I (3) I (4) A 	Jse of Programmable calculator & any oth nstructions written on main answer book a Draw neat diagrams and figures (if necessa Assume suitable data if needed.	er electronic instrument is re strictly to be obeyed. ry) at right places.	s prohibited.
Q.1	Attempt the following questions:		(14) (01)
a)	For change of variable if the constant lir	nits are of x then type of	strip should (01)
b)	be	nto are or w then type or	
```	(a) horizontal (b) Vertical (c) Ob	lique (d) None of The	se
c)	True/False: Curvature of straight line is $2\pi 4$	zero.	(01) (01)
d)	$\int_{0}^{1} \int_{0}^{1} r dr d\theta = \dots$	thasa	
e)	Define: Unit vector	nese	(01)
<b>f</b> )	True/False: The gradient of a scalar poin	t is always vector quantity	( <b>01</b> )
<b>g</b> )	If $\varphi = xyz$ , the value of $ grad \varphi $ at the	e point (1,2,-1) is	(01)
<b>h</b> )	True/False: Radius of curvature is not alw	vays positive.	(01)
i)	Define: solenoidal vector.		(01)
j)	$\int_{1}^{2x} \int_{0}^{x} y dx dy = \dots$ (a) $\frac{3x}{2}$ (b) $\frac{7}{6}$ (c) $\frac{6}{7}$ (d) None of the	se	(01)
k)	True/False: In partial differential equatio are not more than one.	ns number of independen	t variables (01)
<b>l</b> )	True/False: In a Double integral outer lin	nit is always constant.	(01)
m)	If $J = \frac{\partial(u, v)}{\partial(x, y)} \& J' = \frac{\partial(x, y)}{\partial(u, v)}$ . Then JJ'=		(01)
n)	(a) 1 (b) -1 (c) 0 Define: Curvature.	(d) None of these	(01)

Page 1 || 3



#### Attempt any four questions from Q-2 to Q-8

#### **Q.2** Attempt all questions

a) Define Directional Derivative of function. Find the Directional derivative of (05)  $\phi = xy^2 + yz^3$  at the point (2, -1, 1) in the direction of the normal to the surface  $x \log z - y^2 = 4$  at (-1, 2, 1).

Find the value of *a* if the vector 
$$(ax^2y + yz)i + (xy^2 - xz^2)j +$$
 (05)

(14)

(14)

(14)

(14)

b)  $(2xyz - 2x^2y^2)k$  has zero divergence. Find the *curl* of the above vector which has zero divergent.

**c)** Evaluate 
$$\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y+z} dz dy dx.$$
 (04)

#### Q.3 Attempt all questions

**a**) Evaluate  $\nabla e^{r^2}$ ; where  $\vec{r} = xi + yj + zk \& r = |\vec{r}|$ . (05)

**b**) Evaluate 
$$\iint_{R} x^2 dA$$
, where R is region bounded by  $xy = 16$  and the lines  
 $y = x, y = 0, x = 8.$  (05)

c) Eliminate the arbitrary function from the equation z = xy + f(xy) (04)

#### Q.4 Attempt all questions

a) Sketch the region of given integration, change the order of integration and evaluate (05)  
the integral 
$$\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{xe^{2y}}{4-y} dy dx.$$

**b**) Solve 
$$(y^2 + z^2)p - xyq + xz = 0.$$
 (05)

c) Show that the curve 
$$y = x^4$$
 is concave upward at the origin. (04)

#### Q.5 Attempt all questions

a) Evaluate  $\iint (x+y)^2 dxdy$ , where R is the region bounded by (06)

$$x + y = 0, x + y = 1, 2x - y = 0, 2x - y = 3$$
, using transformation  
 $u = x + y, v = 2x - y$ 

- **b)** Define curl of a vector field. Show that a fluid motion is given by  $v = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$  is Irrotational. (05)
- c) Show that the curve  $y = e^x$  is everywhere concave upward. (03)

## Q.6 Attempt all questions (14)

- a) Derive radius of curvature for cartesian curves. (05)
- b) Define: Line integral. Find work done if  $\vec{F} = 2x^2 j + 3xyk$  moving a particle in (05) the *xy*-plane from(0,0) to (1,4) along the curve  $y = 4x^2$ .

Page 2 || 3



c)	Find the equations of tangent plane & normal line at the point $(-2, 1, -3)$ to the	(04)
	ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$	
Q.7	Attempt all questions	(14)
a)	State Green's Theorem. Verify Green's Theorem for $\oint_c [(x^2 - 2xy)dx + (x^2y + 3)dy]$ , where <i>C</i> is the boundary of the region	(09)
	bounded by the parabola $y = x^2$ and line $y = x$ .	

**b**) Define Lagrange's equation. Solve 
$$(y+z)p+(z+x)q = x+y$$
. (05)

## Q.8 Attempt all questions

(14)

- a) State Stokes's Theorem. Verify Stokes's theorem for the vector field  $\vec{F} = (x^2 - y^2)i + 2xyj$  in the rectangular region in the *xy*-plane bounded by (09) x = -a, x = a, y = 0, y = b.
- **b)** Define: Divergence. For which value of the component  $v_3$  is (05)  $v = e^x \cos yi + e^x \sin yj + v_3k$  is solenoidal.



